Design and Characterization of Wideband Terahertz Metamaterial Stop-Band Filter

Author:

Li Hao,Wang JunlinORCID,Wang XinORCID,Feng Yao,Sun Zhanshuo

Abstract

We propose and design a metamaterial broadband stop-band filter with a steep cut-off in the terahertz region. The filter is based on the flexible structure of metal-dielectric-metal-dielectric-metal (MDMDM). Simulation results show that the filter has a center frequency of 1.08 THz, the square ratio reaches 0.95, and the −20 dB bandwidth reaches 1.07 THz. In addition, it has excellent flat-top characteristics with an average transmission rate in the resistive band of no more than 5%. The relative bandwidth has been up to 99%, and stopband absorption rate has reached more than 98%. The effects of the main structural parameters on the transmission characteristics are discussed. The role of each layer of metal in the filter is explored by studying the effect of the variation of the number of metal layers on the filter. The symmetry of the structure ensures the polarization insensitivity of the filter at normal incidence. The correctness of the simulation results was verified by analyzing the effective permittivity and magnetic permeability. To investigate the transmission characteristics of the metamaterial filter in-depth, we analyzed the electric field strength and surface current distribution at the center frequency of the filter. The designed terahertz filter may have potential applications in terahertz communications, sensors, and emerging terahertz technologies.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Inner Mongolia Autonomous Region of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3