Design of a Double-Layer Electrothermal MEMS Safety and Arming Device with a Bistable Mechanism

Author:

Wang Kexin,Hu Tengjiang,Zhao Yulong,Ren WeiORCID,Liu Jiakai

Abstract

Considering the safety of ammunition, safety and arming (S&A) devices are usually designed in pyrotechnics to control energy transfer through a movable barrier mechanism. To achieve both intelligence and miniaturization, electrothermal actuators are used in MEMS S&A devices, which can drive the barrier to an arming position actively. However, only when the actuators’ energy input is continuous can the barrier be stably kept in the arming position to wait for ignition. Here, we propose the design and characterization of a double-layer electrothermal MEMS S&A Device with a bistable mechanism. The S&A device has a double-layer structure and four groups of bistable mechanisms. Each bistable mechanism consists of two V-shape electrothermal actuators to drive a semi-circular barrier and a pawl, respectively, and control their engagement according to a specific operation sequence. Then, the barrier can be kept in the safety or the arming position without energy input. To improve the device’s reliability, the four groups of bistable mechanisms are axisymmetrically placed in two layers to constitute a double-layer barrier structure. The test results show that the S&A device can use constant-voltage driving or the capacitor–discharge driving to drive the double-layer barrier to the safety or the arming position and keep it on the position passively by the bistable mechanism.

Funder

Tengjiang Hu

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3