Mechanical Characterization and Modelling of Subcellular Components of Oocytes

Author:

Du YueORCID,Chen Yizhe,Zhang Shuai,Cheng Dai,Liu Yaowei,Zhao Qili,Sun Mingzhu,Cui Maosheng,Zhao Xin

Abstract

The early steps of embryogenesis are controlled exclusively by the quality of oocyte that linked closely to its mechanical properties. The mechanical properties of an oocyte were commonly characterized by assuming it was homogeneous such that the result deviated significantly from the true fact that it was composed of subcellular components. In this work, we accessed and characterized the subcellular components of the oocytes and developed a layered high-fidelity finite element model for describing the viscoelastic responses of an oocyte under loading. The zona pellucida (ZP) and cytoplasm were isolated from an oocyte using an in-house robotic micromanipulation platform and placed on AFM to separately characterizing their mechanical profiling by analyzing the creep behavior with the force clamping technique. The spring and damping parameters of a Kelvin–Voigt model were derived by fitting the creeping curve to the model, which were used to define the shear relaxation modulus and relaxation time of ZP or cytoplasm in the ZP and cytoplasm model. In the micropipette aspiration experiment, the model was accurate sufficiently to deliver the time-varying aspiration depth of the oocytes under the step negative pressure of a micropipette. In the micropipette microinjection experiment, the model accurately described the intracellular strain introduced by the penetration. The developed oocyte FEM model has implications for further investigating the viscoelastic responses of the oocytes under different loading settings.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3