An Efficient YOLO Algorithm with an Attention Mechanism for Vision-Based Defect Inspection Deployed on FPGA

Author:

Yu LongzhenORCID,Zhu JianhuaORCID,Zhao Qian,Wang Zhixian

Abstract

Industry 4.0 features intelligent manufacturing. Among them, the vision-based defect inspection algorithm is remarkable for quality control in parts manufacturing. With the help of AI and machine learning, auto-adaptive instead of manual operation is achievable in this field, and much progress has been made in recent years. In this study, considering the demand of inspection features in industrialization, we made further improvement in smart defect inspection. An efficient algorithm using Field Programmable Gate Array (FPGA)-accelerated You Only Look Once (YOLO) v3 based on an attention mechanism is proposed. First, because of the relatively fixed camera angle and defect features, an attention mechanism based on the concept of directing the focus of defect inspection is proposed. The attention mechanism consists of three improvements: (a) image preprocessing, which is to tailor images for selectively concentrating on the defect relevant things. Image preprocessing mainly includes cutting, zooming and splicing, named CZS operations. (b) Tailoring the YOLOv3 backbone network, which is to ignore invalid inspection regions in deep neural networks and optimize the network structure. (c) Data augmentation. First, two improvements can be made to efficiently reduce deep learning operations and accelerate the inspection speed, but the preprocessed images are similar and the lack of diversity will reduce network accuracy. So, (c) is added to mitigate the lack of considerable amounts of training data. Second, the algorithm is deployed on a PYNQ-Z2 FPGA board to meet the industrialization production requirements for accuracy, efficiency and extensibility. FPGA can provide a low-latency, low-cost, high-power-efficiency and flexible architecture that enables deep learning acceleration for industrial scenarios. A Xilinx Deep Neural Network Development Kit (DNNDK) converted the improved YOLOv3 to Programmable Logic (PL), which can be deployed on FPGA. The conversion process mainly consists of pruning, quantization and compilation. Experimental results showed that the algorithm had high efficiency, inspection accuracy reached 99.2%, processing speed reached 1.54 Frames per Second (FPS), and power consumption was only 10 W.

Funder

the R&D Project in Key Areas of Guangdong Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference28 articles.

1. A review of deep learning with special emphasis on architectures, applications and recent trends

2. Advanced Deep-Learning Techniques for Salient and Category-Specific Object Detection: A Survey

3. Deep Learning for Generic Object Detection: A Survey

4. Solid wood panel defect detection and recognition system based on faster r-cnn;Jianan;J. For. Eng.,2019

5. Research on gear appearance defect recognition based on improved faster r-cnn;Weixi;J. Syst. Simul.,2019

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3