The Effects of Heat Treatment on Microstructure and Mechanical Properties of Selective Laser Melting 6061 Aluminum Alloy

Author:

Liu WeiORCID,Huang Shan,Du Shuangsong,Gao Ting,Zhang Zhengbin,Chen Xuehui,Huang Lei

Abstract

Selective laser melting technology can be used for forming curved panels of 6061 aluminum alloy thermal shield devices for the International Thermonuclear Experimental Reactor (ITER), in order to make the formed parts with better performance. This study proposes different heat treatment processes, including annealed treatment at 300 °C for 2 h, solution treatment at 535 °C and then aging at 175 °C over 2 h, to control the mechanical behavior of the 6061 aluminum alloy samples prepared by selective laser melting (SLM). The mechanical properties such as ductility, tensile strength, and hardness of SLM 6061 aluminum alloy were investigated, and the microstructure of the samples was analyzed. The eutectic silicon skeleton shape disappeared after annealing treatment at 300 °C for 2 h. The tensile strength decreased by 22.86% (from 315 MPa to 243 MPa of the deposited state samples), and the elongation increased from 2.01% to 6.89%. Moreover, the hardness reduced from 120.07 HV0.2 to 89.6 HV0.2. After solution aging, the unique microstructure of SLM disappeared. Furthermore, the precipitation of massive Si particles on the α-Al matrix increased, and a trace amount of the Mg2Si(β) phase was generated. Compared with the deposited samples, the tensile strength decreased by 12.06%, while the hardness of specimens was 118.8 HV0.2. However, the elongation showed a remarkable increase of 297% (from 2.01% to 7.97%). Therefore, solution aging can critically improve the plasticity without losing significant tensile stress in the SLM 6061 aluminum alloy. This study proposes the use of SLM 6061 aluminum alloy for the thermal shields on the ITER and provides a reference for choosing a reasonable heat-treatment method for the optimal performance of the SLM 6061 aluminum alloy.

Funder

the Anhui Province College Excellent Young Talents Fund Project

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3