Multi-Criteria Assessment of the Economic and Environmental Sustainability Characteristics of Intermediate Wheatgrass Grown as a Dual-Purpose Grain and Forage Crop

Author:

Law Eugene P.ORCID,Wayman Sandra,Pelzer Christopher J.ORCID,Culman Steven W.ORCID,Gómez Miguel I.,DiTommaso AntonioORCID,Ryan Matthew R.ORCID

Abstract

Kernza® intermediate wheatgrass [IWG; Thinopyrum intermedium (Host) Barkworth & Dewey] is a novel perennial cool-season grass that is being bred for use as a dual-purpose grain and forage crop. The environmental benefits of perennial agriculture have motivated the development of IWG cropping systems and markets for perennial grain food products made with Kernza, but the economic viability and environmental impact of IWG remain uncertain. In this study, we compared three-year cycles of five organic grain production systems: an IWG monoculture, IWG intercropped with medium red clover, a continuous winter wheat monoculture, a wheat–red clover intercrop, and a corn–soybean–spelt rotation. Economic and environmental impacts of each cropping system were assessed using enterprise budgets, energy use, greenhouse gas (GHG) emissions, and emergy indices as indicators. Grain and biomass yields and values for production inputs used in these analyses were obtained from experimental data and management records from two separate field experiments conducted in New York State, USA. Grain yield of IWG averaged 478 kg ha−1 yr−1 over three years, equaling approximately 17% of winter wheat grain yield (2807 kg ha−1 yr−1) over the same period. In contrast, total forage harvested averaged 6438 kg ha−1 yr−1 from the IWG systems, approximately 160% that of the wheat systems (4024 kg ha−1 yr−1). Low grain yield of IWG greatly impacted economic indicators, with break-even farm gate prices for Kernza grain calculated to be 23% greater than the current price of organic winter wheat in New York. Energy use and GHG emissions from the IWG systems were similar to the annual systems when allocated per hectare of production area but were much greater when allocated per kg of grain produced and much lower when allocated per kg of biomass harvested inclusive of hay and straw. Emergy sustainability indices were favorable for the IWG systems due to lower estimated soil erosion and fewer external inputs over the three-year crop cycle. The results show that the sustainability of IWG production is highly dependent on how the hay or straw co-product is used and the extent to which external inputs can be substituted with locally available renewable resources. Integrated crop–livestock systems appear to be a viable scenario for the adoption of IWG as a dual-use perennial grain and forage crop.

Funder

United States Department of Agriculture NESARE Research and Education Grant

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3