Development of Novel Membranes Based on Polyvinyl Alcohol Modified by Pluronic F127 for Pervaporation Dehydration of Isopropanol

Author:

Dmitrenko MariiaORCID,Atta RamadanORCID,Zolotarev Andrey,Kuzminova Anna,Ermakov Sergey,Penkova AnastasiaORCID

Abstract

Membrane methods are environmentally friendly and can significantly improve the design and development of new energy consumption processes that are very important nowadays. However, their effective use requires advanced membrane materials. This study aims to improve the performance of pervaporation polyvinyl alcohol (PVA)-based membrane for isopropanol dehydration. To achieve this goal, two methods were applied: (1) bulk modification of PVA by Pluronic F127 and (2) development of supported PVA-based membrane using polyphenylene isophthalamide (PA) as a substrate with a various porosity. Developed membranes were characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy (SEM), contact angle measurement, and swelling experiments. The concentration influence of PA casting solution (12–20 wt.%) on the performance of porous PA membranes (substrates) was investigated in ultrafiltration of pure water and bovine serum albumin (BSA) solution as well as by microscopic methods (SEM and atomic force microscopy). The developed dense and supported PVA-based membranes were tested in the pervaporation dehydration of isopropanol. Optimal transport characteristics were obtained for a supported membrane with a PVA-based selective layer containing 3 wt.% Pluronic F127 onto an ultrafiltration PA (17 wt.%) substrate: improved permeation flux 0.100–1.164 kg/(m2 h) and 98.8–84.6 wt.% water content in the permeate in pervaporation dehydration of isopropanol (12–80 wt.% water).

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3