Abstract
Determining an optimal calibration strategy for hydrological models is essential for a robust and accurate water balance assessment, in particular, for catchments with limited observed data. In the present study, the hydrological model Bilan was used to simulate hydrological balance for 20 catchments throughout the Czech Republic during the period 1981–2016. Calibration strategies utilizing observed runoff and estimated soil moisture time series were compared with those using only long-term statistics (signatures) of runoff and soil moisture as well as a combination of signatures and time series. Calibration strategies were evaluated considering the goodness-of-fit, the bias in flow duration curve and runoff signatures and uncertainty of the Bilan model. Results indicate that the expert calibration and calibration with observed runoff time series are, in general, preferred. On the other hand, we show that, in many cases, the extension of the calibration criteria to also include runoff or soil moisture signatures is beneficial, particularly for decreasing the uncertainty in parameters of the hydrological model. Moreover, in many cases, fitting the model with hydrological signatures only provides a comparable fit to that of the calibration strategies employing runoff time series.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献