A Numerical Simulation of Membrane Distillation Treatment of Mine Drainage by Computational Fluid Dynamics

Author:

Qi Ji,Lv Jiafeng,Li Zhen,Bian Wei,Li Jingfeng,Liu Shuqin

Abstract

Membrane distillation (MD) is a promising technology to treat mine water. This work aims to investigate the change in mass and heat transfer in reverse osmosis mine water treatment by vacuum membrane distillation (VMD). A 3D computational fluid dynamics (CFD) model was carried out using COMSOL Multiphysics and verified by the experimental results. Then, response Surface Methodology (RSM) was used to explore the effects of various parameters on the permeate flux and heat transfer efficiency. In terms of the influence degree on the permeation flux, the vacuum pressure > feed temperature > membrane length > feed temperature membrane length, and the membrane length has a negative correlation with the membrane flux. Increasing the feed temperature can also increase the convective heat transfer at the feed side, which will affect the heat transfer efficiency. Furthermore, the feed temperature also has a critical effect on the temperature polarization phenomenon. The temperature polarization becomes more notable at high temperatures.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference42 articles.

1. Technical progress of water resource protection and utilization by coal mining in China;Dazhao;Coal Sci. Technol.,2016

2. Research on underground classification treatment technology of highly mineralized mine water in Lingxin Coal Mine;Binbin;Coal Eng.,2018

3. An experimentally optimized model for heat and mass transfer in direct contact membrane distillation

4. Membranes and theoretical modeling of membrane distillation: A review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3