Fault Diagnosis for Rotating Machinery Using Multiscale Permutation Entropy and Convolutional Neural Networks

Author:

Li Hongmei,Huang Jinying,Yang Xiwang,Luo Jia,Zhang Lidong,Pang Yu

Abstract

In view of the limitations of existing rotating machine fault diagnosis methods in single-scale signal analysis, a fault diagnosis method based on multi-scale permutation entropy (MPE) and multi-channel fusion convolutional neural networks (MCFCNN) is proposed. First, MPE quantitatively analyzes the vibration signals of rotating machine at different scales, and obtains permutation entropy (PE) to construct feature vector sets. Then, considering the structure and spatial information between different sensor measurement points, MCFCNN constructs multiple channels in the input layer according to the number of sensors, and each channel corresponds to the MPE feature sets of different monitored points. MCFCNN uses convolutional kernels to learn the features of each channel in an unsupervised way, and fuses the features of each channel into a new feature map. At last, multi-layer perceptron is applied to fuse multi-channel features and identify faults. Through the health monitoring experiment of planetary gearbox and rolling bearing, and compared with single channel convolutional neural networks (CNN) and existing CNN based fusion methods, the proposed method based on MPE and MCFCNN model can diagnose faults with high accuracy, stability, and speed.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3