Abstract
We propose a possible scheme to study the thermalization in a quantum harmonic oscillator with random disorder. Our numerical simulation shows that through the effect of random disorder, the system can undergo a transition from an initial nonequilibrium state to a equilibrium state. Unlike the classical damped harmonic oscillator where total energy is dissipated, total energy of the disordered quantum harmonic oscillator is conserved. In particular, at equilibrium the initial mechanical energy is transformed to the thermodynamic energy in which kinetic and potential energies are evenly distributed. Shannon entropy in different bases are shown to yield consistent results during the thermalization.
Funder
Ministry of Science and Technology, Taiwan
Subject
General Physics and Astronomy
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献