Estimation of the Hydrophobicity of a Composite Insulator Based on an Improved Probabilistic Neural Network

Author:

Sun Qiuqin,Lin Fei,Yan Weitao,Wang FengORCID,Chen She,Zhong Lipeng

Abstract

The estimation of hydrophobicity for composite insulators is of great importance for the purpose of predicting the surface degradation. The hydrophobic image is firstly decomposed by the 2-level wavelet, along with the multi-Retinex algorithm in this paper. The processed low frequency sub-band and high frequency sub-band images are then reconstructed. The 3 × 3 Sobel operator is performed to measure the basic spatial gradient in four directions, including the horizontal direction, the diagonal direction, and then the vertical direction. The shape factor, the area ratio of the largest water droplet, and the coverage rate of the water droplet are selected as the feature parameters and input into the classification network that has been trained to do the hydrophobic level recognition. The effect of the different expansion speed on the desired learning results is discussed. The threshold plays a key role in image processing. Considering that the difference between the water droplet edge and the composite insulator surface is relatively small, the asymptotic semi-soft threshold function is used in pretreatment, whereas the adaptive two-dimensional Otsu’s method is used in image segmentation. The experimental results show that the proposed method has high recognition accuracy up to 94.8% for a diversity of images, and it is superior to the improved Shape Factor Method, the Multi-fractal Method, and the RBF Neural Network.

Funder

National Natural Science Foundation of China

Chongqing University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Insulation Hydrophobicity Classification Based on Fourier Transform and Shallow Neural Networks;2024-08-17

2. Neutron image denoising method based on adaptive new wavelet threshold function;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-02

3. Hydrophobicity-Based Grading of Industrial Composite Insulators Images Using Cross Attention Vision Transformer With Knowledge Distillation;IEEE Transactions on Dielectrics and Electrical Insulation;2024-02

4. Image Visibility Patch Aided Hydrophobic Class Detection of Silicone Rubber Insulators Employing Bi-LSTM Network;2023 IEEE 3rd International Conference on Smart Technologies for Power, Energy and Control (STPEC);2023-12-10

5. Monitoring of Composite Insulators in Transmission Lines: A Hydrophobicity Diagnostic Method Using Aerial Images and Residual Neural Networks;IEEE Transactions on Power Delivery;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3