Development of Economizer Control Method with Variable Mixed Air Temperature

Author:

Lee Jin-Hyun,Kim Yong-Shik,Jo Jae-Hun,Cho Hyun,Cho Young-Hum

Abstract

Achieving energy efficiency by improving the operating method of the system used in existing buildings is attracting considerable attention. The Building Design Criteria for Energy Saving was established to induce energy saving design in the domestic construction field, and the introduction of a free-cooling system, such as an economizer system, as an item of the mechanical sector, was evaluated. The economizer is an energy saving method that reduces the building load by introducing outdoor air through damper control according to the indoor and outdoor conditions. The system consists of dry-bulb temperature control and enthalpy control and the mixed air temperature is kept constant in the conventional economizer controls. On the other hand, in dry-bulb temperature control, when the set value of the mixed air temperature is changed according to the load, additional energy savings are expected compared to the conventional control method. Therefore, this paper proposes an economizer control that makes the mixed air temperature variable according to the load in a Constant Air Volume single duct system. For this, a load prediction is needed and an Artificial Neural Network is used for the load prediction. In addition, the relationship between the mixed air temperature and energy were analyzed using the BIN method and TRNSYS 17. Based on the results of previous analysis, a control method which predicting the load using Artificial Neural Network and controlling the mixed air temperature according to the predicted load in the dry-bulb temperature control of a Constant Air Volume single duct system is proposed and the proposed control was applied to the dynamic simulation program and compared with the conventional control. The results show that the temperature of each room was 21–23 °C in summer and 22.5–26 °C in winter when the economizer was controlled using the proposed control method and the energy consumption analysis showed that 19% of the energy was reduced compared to the conventional method when the proposed method was controlled.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3