Influences on High-Voltage Electro Pulse Boring in Granite

Author:

Li Changping,Duan Longchen,Tan SongchengORCID,Chikhotkin Victor

Abstract

As the exploration and drilling of oil, natural gas and geothermal wells are expanding continuously, research into high-efficiency rock drilling technology is imperative. High-voltage electro pulse boring (EPB) has the advantages of high rock breaking efficiency and good wall quality, and is a new and efficient potential method of rock breaking. The design of electrode drill bits and the selection of drilling process parameters are the main obstacles restricting the commercialization of EPB. Accordingly, it is necessary to determine the influences on high-voltage EPB. In this study, based on the equivalent circuit of high-voltage electro pulse breakdown, a mathematical model of high-voltage electro pulse discharge in rock is established. Meanwhile, a numerical simulation model of high-voltage EPB of hard granite is established based on a coaxial cylindrical electrode structure, which is often used for electrode drill bits. The simulation analysis software Comsol Multiphysics (Comsol Multiphysics®5.3a, COMSOL Co., Ltd., Stockholm, Sweden) is used to study the influences of granite composition, electrode spacing and electrode shape on the high-voltage EPB process. In addition, the influences of electrical parameters on high-voltage EPB are calculated according to a model of high-voltage electro pulse discharge in rock. Finally, it is demonstrated that high-voltage EPB is influenced by granite composition, electrical parameters, electrode spacing, and electrode shape, and the relationships between these factors are obtained. This study is of guiding significance for improving rock breaking efficiency, reducing energy loss, designing electrode drill bits and selecting drilling process parameters.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3