Identification of Power Transformer Winding Fault Types by a Hierarchical Dimension Reduction Classifier

Author:

Zhang ZiweiORCID,Gao Wensheng,Kari Tusongjiang,Lin Huan

Abstract

Frequency response analysis (FRA) demonstrates significant advantages in the diagnosis of transformer winding faults. The instrument market desires intelligent diagnostic functions to ensure that the FRA technique is more practically useful. In this paper, a hierarchical dimension reduction (HDR) classifier is proposed to identify types of typical incipient winding faults. The classifier procedure is hierarchical. First, measured frequency response (FR) curves are preprocessed using binarization and binary erosion to normalize FR data. Second, the pre-processed data are divided into groups according to the definition of dynamic frequency sub-bands. Then, hybrid algorithms comprised of two conventional and two novel quantitative indices are used to reduce the dimension of the FR data and extract the features for identifying typical types of transformer winding faults. The classifier provides an integration of a priori expertise and quantitative analysis in the furtherance of the automatic identification of FR data. Twenty-six sets of FR data from different types of power transformers with multiple types of winding faults were collected from an experimental simulation, literature, and real tests performed by a grid company. Finally, real case studies were conducted to verify the performance of the HDR classifier in the automatic identification of transformer winding faults.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference38 articles.

1. Fit at 50https://library.e.abb.com/public/555ce7b19930b339c12577bb003fc4aa/ABB_Review_fit_at_50_English.pdf

2. Recent Trends in the Condition Monitoring of Transformers: Theory, Implementation and Analysis;Chakravorti,2013

3. Monitoring and analysis of electronic current transformer’s field operating errors

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3