Electrical Treeing in Cable Insulation under Different HVDC Operational Conditions

Author:

Fard Mehrtash,Farrag Mohamed,McMeekin Scott,Reid Alistair

Abstract

Electrical treeing (ET) can irreversibly deteriorate the insulation of polymeric power cables leading to a complete failure. This paper presents the results of an experimental investigation into the effects of unipolar and polarity reversing DC voltages on electrical tree (ET) and partial discharge (PD) behavior within high voltage direct current (HVDC) cross linked polyethylene (XLPE) cable insulation. A double needle configuration was adopted to produce non-uniform electric fields within the insulation samples, potentially leading to electrical trees. The development of trees was monitored through an optical method and the associated partial discharge signals were measured through an electrical detection technique, simultaneously. The analysis of the results shows reasonable relation between the formation of ETs and the type of the applied voltages. The polarity reversing attribute of the test voltages has a pronounced effect on formation and growth of electrical trees. This implicates an interaction between the space charges that accumulate within polymeric materials and the operational polarity reversing electric fields, which causes insulation degradation. Therefore, study of influencing HVDC operational parameters on insulation degradations can contribute to improvements in cable design and advancement in insulation diagnostic strategies applicable in HVDC systems leading to more effective asset management.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference28 articles.

1. Special Report: 60 Years of HVDChttps://new.abb.com/motors-generators/about-us/document-library

2. High Voltage Direct Current Transmission;Arrillaga,1998

3. Development of high voltage dc-Xlpe cable system;Murata;SEI Tech. Rev.,2013

4. Stress conditions in HVDC equipment and routes to in service failure

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3