A Participation Degree-Based Fault Detection Method for Wireless Sensor Networks

Author:

Zhang Wei,Zhang Gongxuan,Chen Xiaohui,Zhou Xiumin,Liu Yueqi,Zhou JunlongORCID

Abstract

In wireless sensor networks (WSNs), there are many challenges for outlier detection, such as fault detection, fraud detection, intrusion detection, and so on. In this paper, the participation degree of instances in the hierarchical clustering process infers the relationship between instances. However, most of the existing algorithms ignore such information. Thus, we propose a novel fault detection technique based on the participation degree, called fault detection based on participation degree (FDP). Our algorithm has the following advantages. First, it does not need data training in labeled datasets; in fact, it uses the participation degree to measure the differences between fault points and normal points without setting distance or density parameters. Second, FDP can detect global outliers without local cluster influence. Experimental results demonstrate the performance of our approach by applying it to synthetic and real-world datasets and contrasting it with four well-known techniques: isolation forest (IF), local outlier factor (LOF), one-class support vector machine (OCS), and robust covariance (RC).

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Literature Review on Outlier Detection in Wireless Sensor Networks;Journal of Advances in Information Technology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3