Effect of Spray Distance and Powder Feed Rate on Particle Velocity in Cold Spray Processes

Author:

Neo Rong Gen,Wu KaiqiangORCID,Tan Sung Chyn,Zhou WeiORCID

Abstract

Cold spray technology using micron-sized particles to produce coatings is increasingly used for reparative tasks in various industries. In a cold spray setup, the gun is usually connected to a robotic arm to deposit coatings on components with complex geometries. For these components, the standoff distance used in the cold spray process has to be large enough for easy maneuverability of the gun around a small radial feature. However, a small standoff distance is commonly found in most studies, which is thought to prevent a velocity drop of the particles over a larger distance. Here, a study was carried out by measuring the Inconel 625 particle velocity at different spray distances, ranging from 3 to 40 cm. The highest average velocity of 781 m/s was found at a spray distance of 8 cm. Furthermore, a study with varying powder feed rates was also conducted. An increase in the powder feed rate was found to have a minimal effect on the particle velocity. Inconel 625 coatings deposited at the optimum standoff distance (8 cm) were found to have low porosity and high hardness. The results in this study demonstrate that a larger standoff distance can be applied without a significant drop in velocity for cold spray applications requiring high maneuverability.

Funder

National Research Foundation

Rolls-Royce Singapore Pte. Ltd.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3