Textures of Non-Oriented Electrical Steel Sheets Produced by Skew Cold Rolling and Annealing

Author:

He Youliang,Hilinski Erik J.

Abstract

In order to investigate the effect of cold rolling deformation mode and initial texture on the final textures of non-oriented electrical steels, a special rolling technique, i.e., skew rolling, was utilized to cold reduce steels. This not only altered initial textures but also changed the rolling deformation mode from plane-strain compression (2D) to a more complicated 3D mode consisting of thickness reduction, strip elongation, strip width spread and bending. This 3D deformation induced significantly different cold-rolling textures from those observed with conventional rolling, especially for steels containing low (0.88 wt%) and medium (1.83 wt%) amounts of silicon at high skew angles (30° and 45°). The difference in cold-rolling texture was attributed to the change of initial texture and the high shear strain resulting from skew rolling. After annealing, significantly different recrystallization textures also formed, which did not show continuous <110>//RD (rolling direction) and <111>//ND (normal direction) fibers as commonly observed in conventionally rolled and annealed steels. At some skew angles (e.g., 15–30°), the desired <001>//ND texture was largely enhanced, while at other angles (e.g., 45°), this fiber was essentially unchanged. The formation mechanisms of the cold rolling and recrystallization textures were qualitatively discussed.

Funder

Natural Resources Canada, Office of Energy Research and Development

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3