Interval Fuzzy Model for Robust Aircraft IMU Sensors Fault Detection

Author:

Crispoltoni Michele,Fravolini Mario,Balzano Fabio,D’Urso Stephane,Napolitano Marcello

Abstract

This paper proposes a data-based approach for a robust fault detection (FD) of the inertial measurement unit (IMU) sensors of an aircraft. Fuzzy interval models (FIMs) have been introduced for coping with the significant modeling uncertainties caused by poorly modeled aerodynamics. The proposed FIMs are used to compute robust prediction intervals for the measurements provided by the IMU sensors. Specifically, a nonlinear neural network (NN) model is used as central prediction of the sensor response while the uncertainty around the central estimation is captured by the FIM model. The uncertainty has been also modelled using a conventional linear Interval Model (IM) approach; this allows a quantitative evaluation of the benefits provided by the FIM approach. The identification of the IMs and of the FIMs was formalized as a linear matrix inequality (LMI) optimization problem using as cost function the (mean) amplitude of the prediction interval and as optimization variables the parameters defining the amplitudes of the intervals of the IMs and FIMs. Based on the identified models, FD validation tests have been successfully conducted using actual flight data of a P92 Tecnam aircraft by artificially injecting additive fault signals on the fault free IMU readings.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3