Abstract
High precision atomic data are indispensable for studies of fundamental symmetries, tests of fundamental physics postulates, developments of atomic clocks, ultracold atom experiments, astrophysics, plasma science, and many other fields of research. We have developed a new parallel atomic structure code package that enables computations that were not previously possible due to system complexity. This code package also allows much quicker computations to be run with higher accuracy for simple systems. We explored different methods of load-balancing matrix element calculations for many-electron systems, which are very difficult due to the intrinsic nature of the computational methods used to calculate them. Furthermore, dynamic memory allocation and MPI parallelization have been implemented to optimize and accelerate the computations. We have achieved near-perfect linear scalability and efficiency with the number of processors used for calculation, paving the way towards the future where most open-shell systems will finally be able to be treated with good accuracy. We present several examples illustrating new capabilities of the newly developed codes, specifically correlating up to all 60 electrons in the highly charged Ir17+ ion and predicting certain properties of Fe16+.
Funder
National Science Foundation
Office of Naval Research
Russian Science Foundation
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献