Are Current Discontinuities in Molecular Devices Experimentally Observable?

Author:

Minotti F.,Modanese G.ORCID

Abstract

An ongoing debate in the first-principles description of conduction in molecular devices concerns the correct definition of current in the presence of non-local potentials. If the physical current density j=(−ieℏ/2m)(Ψ*∇Ψ−Ψ∇Ψ*) is not locally conserved but can be re-adjusted by a non-local term, which current should be regarded as real? Situations of this kind have been studied for example, for currents in saturated chains of alkanes, silanes and germanes, and in linear carbon wires. We prove that in any case the extended Maxwell equations by Aharonov-Bohm give the e.m. field generated by such currents without any ambiguity. In fact, the wave equations have the same source terms as in Maxwell theory, but the local non-conservation of charge leads to longitudinal radiative contributions of E, as well as to additional transverse radiative terms in both E and B. For an oscillating dipole we show that the radiated electrical field has a longitudinal component proportional to ωP^, where P^ is the anomalous moment ∫I^(x)xd3x and I^ is the space-dependent part of the anomaly I=∂tρ+∇·j. For example, if a fraction η of a charge q oscillating over a distance 2a lacks a corresponding current, the predicted maximum longitudinal field (along the oscillation axis) is EL,max=2ηω2qa/(c2r). In the case of a stationary current in a molecular device, a failure of local current conservation causes a “missing field” effect that can be experimentally observable, especially if its entity depends on the total current; in this case one should observe at a fixed position changes in the ratio B/i in dependence on i, in contrast with the standard Maxwell equations. The missing field effect is confirmed by numerical solutions of the extended equations, which also show the spatial distribution of the non-local term in the current.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference47 articles.

1. Definition of current density in the presence of a non-local potential;Li;Nanotechnology,2008

2. First-principles calculation of current density in molecular devices;Zhang;Phys. Rev. B,2011

3. Charge nonconservation of molecular devices in the presence of a nonlocal potential;Lai;Phys. Rev. B,2019

4. Gauge Theory of Elementary Particle Physics;Cheng,1984

5. Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals;Parameswaran;Phys. Rev. X,2014

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3