Entity Relation Extraction Based on Entity Indicators

Author:

Qin Yongbin,Yang Weizhe,Wang Kai,Huang Ruizhang,Tian Feng,Ao Shaolin,Chen Yanping

Abstract

Relation extraction aims to extract semantic relationships between two specified named entities in a sentence. Because a sentence often contains several named entity pairs, a neural network is easily bewildered when learning a relation representation without position and semantic information about the considered entity pair. In this paper, instead of learning an abstract representation from raw inputs, task-related entity indicators are designed to enable a deep neural network to concentrate on the task-relevant information. By implanting entity indicators into a relation instance, the neural network is effective for encoding syntactic and semantic information about a relation instance. Organized, structured and unified entity indicators can make the similarity between sentences that possess the same or similar entity pair and the internal symmetry of one sentence more obviously. In the experiment, a systemic analysis was conducted to evaluate the impact of entity indicators on relation extraction. This method has achieved state-of-the-art performance, exceeding the compared methods by more than 3.7%, 5.0% and 11.2% in F1 score on the ACE Chinese corpus, ACE English corpus and Chinese literature text corpus, respectively.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference56 articles.

1. A relation extraction approach for clinical decision support;Agosti;arXiv,2019

2. Text mining for drug discovery;Zheng,2019

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3