Abstract
In this paper, we use an SIRD model to analyze the evolution of the COVID-19 pandemic in Spain, caused by a new virus called SARS-CoV-2 from the coronavirus family. This model is governed by a nonlinear system of differential equations that allows us to detect trends in the pandemic and make reliable predictions of the evolution of the infection in the short term. This work shows this evolution of the infection in various changing stages throughout the period of maximum alert in Spain. It also shows a quick adaptation of the parameters that define the disease in several stages. In addition, the model confirms the effectiveness of quarantine to avoid the exponential expansion of the pandemic and reduce the number of deaths. The analysis shows good short-term predictions using the SIRD model, which are useful to influence the evolution of the epidemic and thus carry out actions that help reduce its harmful effects.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference34 articles.
1. Mathematical Models in Population Biology and Epidemiology;Brauer,2001
2. Discrete epidemic models
3. Modeling Biological Systems;Haefner,2005
4. An Introduction to Mathematical Epidemiology;Martcheva,2015
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献