Space-Time Coupling: Current Concept and Two Examples from Ultrafast Optics Studied Using Exact Solution of EM Equations

Author:

Popov Nikolay L.,Vinogradov Alexander V.

Abstract

Current approach to space-time coupling (STC) phenomena is given together with a complementary version of the STC concept that emphasizes the finiteness of the energy of the considered pulses. Manifestations of STC are discussed in the framework of the simplest exact localized solution of Maxwell’s equations, exhibiting a “collapsing shell”. It falls onto the center, continuously deforming, and then, having reached maximum compression, expands back without losing energy. Analytical solutions describing this process enable to fully characterize the field in space-time. It allowed to express energy density in the center of collapse in the terms of total pulse energy, frequency and spectral width in the far zone. The change of the pulse shape while travelling from one point to another is important for coherent control of quantum systems. We considered the excitation of a two-level system located in the center of the collapsing EM (electromagnetic) pulse. The result is again expressed through the parameters of the incident pulse. This study showed that as it propagates, a unipolar pulse can turn into a bipolar one, and in the case of measuring the excitation efficiency, we can judge which of these two pulses we are dealing with. The obtained results have no limitation on the number of cycles in a pulse. Our work confirms the productivity of using exact solutions of EM wave equations for describing the phenomena associated with STC effects. This is facilitated by rapid progress in the search for new types of such solutions.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pulses of the Electromagnetic Field with a Non-Zero Electric Area;Radiophysics and Quantum Electronics;2023-05

2. 2D splash mode;Journal of Physics: Conference Series;2022-12-01

3. Special Issue Editorial “Atomic Processes in Plasmas and Gases: Symmetries and Beyond”;Symmetry;2022-07-22

4. Free Space Strange and Unipolar EM Pulses: Yes or No?;Foundations;2021-10-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3