Fuzzy Logic Testing Approach for Measuring Software Completeness

Author:

Iqbal NayyarORCID,Sang JunORCID

Abstract

Due to advancements in science and technology, software is constantly evolving. To adapt to newly demanded requirements in a piece of software, software components are modified or developed. Measuring software completeness has been a challenging task for software companies. The uncertain and imprecise intrinsic relationships within software components have been unaddressed by researchers during the validation process. In this study, we introduced a new fuzzy logic testing approach for measuring the completeness of software. We measured the fuzzy membership value for each software component by a fuzzy logic testing approach called the fuzzy test. For each software component, the system response was tested by identifying which software components in the system required changes. Based on the measured fuzzy membership values for each software component, software completeness was calculated. The introduced approach scales the software completeness between zero and one. A software component with a complete membership value indicates that the software component does not require any modification. A non-membership value specifies that the existing software component is no longer required in the system or that a new software component is required to replace it. The partial membership value specifies that the software component requires few new functionalities according to the new software requirements. Software with a partial membership value requires partial restructuring and design recovery of its components. Symmetric design of software components reduces the complexity in the restructuring of software during modification. In the study, we showed that by using the introduced approach, high-quality software that is faultless, reliable, easily maintained, efficient, and cost-effective can be developed.

Funder

Chongqing Graduate Tutor Team Construction Project

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference62 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Empowered Software Prediction System;Wasit Journal of Computer and Mathematics Science;2022-09-30

2. Verification and Validation Framework for AFDX Avionics Networks;IEEE Access;2022

3. Fuzzy Cognitive Maps for Software Fault Prediction;2021 15th Turkish National Software Engineering Symposium (UYMS);2021-11-17

4. Reliable Requirements Engineering Practices for COVID-19 Using Blockchain;Sustainability;2021-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3