Abstract
The frequency of occurrence of step length in the migratory behaviour of various organisms, including humans, is characterized by the power law distribution. This pattern of behaviour is known as the Lévy walk, and the reason for this phenomenon has been investigated extensively. Especially in humans, one possibility might be that this pattern reflects the change in self-confidence in one’s chosen behaviour. We used simulations to demonstrate that active assumptions cause changes in the confidence level in one’s choice under a situation of lack of information. More specifically, we presented an algorithm that introduced the effects of learning and forgetting into Bayesian inference, and simulated an imitation game in which two decision-making agents incorporating the algorithm estimated each other’s internal models. For forgetting without learning, each agents’ confidence levels in their own estimation remained low owing to a lack of information about the counterpart, and the agents changed their hypotheses about the opponent frequently, and the frequency distribution of the duration of the hypotheses followed an exponential distribution for a wide range of forgetting rates. Conversely, when learning was introduced, high confidence levels occasionally occurred even at high forgetting rates, and exponential distributions universally turned into power law distribution.
Funder
Japan Society for the Promotion of Science
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献