Energy Saving and Economic Evaluations of Exhaust Waste Heat Recovery Hot Water Supply System for Resort

Author:

Nguyen Nghia-Huu,Lee Dong-Yeon,Garud Kunal SandipORCID,Lee Moo-YeonORCID

Abstract

The objective of this study is to investigate the energy savings and economics of the hot water supply system for the luxury resort. The hot water was generated using the waste heat from the exhaust gas heat (EGH) of internal combustion engine (ICE) installed at the luxury resort. The capacity and characteristics of waste heat source, flow demand and supply system of hot water were surveyed, and data is collected from the real system. The new heat exchanger system which utilizes the EGH to produce the hot water is designed considering the dew point temperature and the back pressure of exhaust gas system. The results show that the proposed system could supply hot water at a temperature of 55 °C corresponding to the present resort demand of 6 m3/h using EGH of ICE at 20% load. The proposed system could achieve the saving of 400 L/day in diesel oil (DO) fuel consumption and the payback time of new system could be evaluated as 9 months. The proposed system could produce hot water of 14 m3/h at 25% of engine load and 29 m3/h at full engine load which are sufficient to satisfy the regular and maximum hot water demand of resort. The presented results show the capability of the proposed system to satisfy the current hot water demand of resort and suggest the larger potential to save energy by recovering EGH of ICE. The novelty of the present work involves detailed methodology to design heat exchangers and evaluate system economics for hot water supply system based on EGH of ICE.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3