Unconventional SUSY and Conventional Physics: A Pedagogical Review

Author:

Alvarez Pedro D.,Delage Lucas,Valenzuela Mauricio,Zanelli Jorge

Abstract

In supersymmetric extensions of the Standard Model, the observed particles come in fermion–boson pairs necessary for the realization of supersymmetry (SUSY). In spite of the expected abundance of super-partners for all the known particles, not a single supersymmetric pair has been reported to date. Although a hypothetical SUSY breaking mechanism, operating at high energy inaccessible to current experiments cannot be ruled out, this reduces SUSY’s predictive power and it is unclear whether SUSY, in its standard form, can help reducing the remaining puzzles of the standard model (SM). Here we argue that SUSY can be realized in a different way, connecting spacetime and internal bosonic symmetries, combining bosonic gauge fields and fermionic matter particles in a single gauge field, a Lie superalgebra-valued connection. In this unconventional representation, states do not come in SUSY pairs, avoiding the doubling of particles and fields and SUSY is not a fully off-shell invariance of the action. The resulting systems are remarkably simple, closely resembling a standard quantum field theory and SUSY still emerges as a contingent symmetry that depends on the features of the vacuum/ground state. We illustrate the general construction with two examples: (i) A 2 + 1 dimensional system based on the osp(2,2|2) superalgebra, including Lorentz and u(1) generators that describe graphene; (ii) a supersymmetric extension of 3 + 1 conformal gravity with an SU(2,2|2) connection that describes a gauge theory with an emergent chiral symmetry breaking, coupled to gravity. The extensions to higher odd and even dimensions, as well as the extensions to accommodate more general internal symmetries are also outlined.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3