CAKE: Compatible Authentication and Key Exchange Protocol for a Smart City in 5G Networks

Author:

Chuang Yun-Hsin,Tseng Yuh-Min

Abstract

In a smart city, there are different types of entities, such as nature persons, IoT devices, and service providers, which have different computational limitations and storage limitations. Unfortunately, all of the existing authentication and key exchange (AKE) protocols are designed for either client–server or client–client authentication, including the ones designed for smart cities. In this paper, we present the idea of a compatible authentication and key exchange (CAKE) protocol which provides cross-species authentication. We propose the first CAKE protocol for a smart city that any two valid entities can authenticate with each other and create a secure session key without the help of any third party, while there is also no password table and no public key issuing problem. The entity can be a natural person having biometrics, an IoT device embedded with a physical unclonable function (PUF), or a service provider. Moreover, we extend the CAKE protocol to an anonymous CAKE (ACAKE) protocol, which provides natural persons an anonymous option to protect their privacy. In addition, both the proposed CAKE and ACAKE protocols can deal with the entity revocation problem. We define the framework and the security model of CAKE and ACAKE protocols. Under the security model, we formally prove that the proposed protocols are secure under the elliptic curve computational Diffie–Hellman (ECCDH) problem, the decisional bilinear Diffie–Hellman (DBDH) problem, and hash function assumptions. Comparisons with the related protocols are conducted to demonstrate the benefits of our protocols. Performance analysis is conducted and the experience results show that the proposed protocols are practical in a smart city.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference46 articles.

1. A reliable communication framework and its use in Internet of Things (IoT);Alam;Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol.,2018

2. Next Generation 5G Wireless Networks: A Comprehensive Survey

3. Impact of 5G technologies on smart city implementation;Raol;Wirel. Pers. Commun.,2018

4. Using smart city data in 5G self-organizing networks;Cia;IEEE IoT,2019

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3