Improved YOLOv4 Marine Target Detection Combined with CBAM

Author:

Fu Huixuan,Song Guoqing,Wang Yuchao

Abstract

Marine target detection technology plays an important role in sea surface monitoring, sea area management, ship collision avoidance, and other fields. Traditional marine target detection algorithms cannot meet the requirements of accuracy and speed. This article uses the advantages of deep learning in big data feature learning to propose the YOLOv4 marine target detection method fused with a convolutional attention module. Marine target detection datasets were collected and produced and marine targets were divided into ten categories, including speedboat, warship, passenger ship, cargo ship, sailboat, tugboat, and kayak. Aiming at the problem of insufficient detection accuracy of YOLOv4’s self-built marine target dataset, a convolutional attention module is added to the YOLOv4 network to increase the weight of useful features while suppressing the weight of invalid features to improve detection accuracy. The experimental results show that the improved YOLOv4 has higher detection accuracy than the original YOLOv4, and has better detection results for small targets, multiple targets, and overlapping targets. The detection speed meets the real-time requirements, verifying the effectiveness of the improved algorithm.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3