Abstract
There are some generalizations of the classical exponential distribution in the statistical literature that have proven to be helpful in numerous scenarios. Some of these distributions are the families of distributions that were proposed by Marshall and Olkin and Gupta. The disadvantage of these models is the impossibility of fitting data of a bimodal nature of incorporating covariates in the model in a simple way. Some empirical datasets with positive support, such as losses in insurance portfolios, show an excess of zero values and bimodality. For these cases, classical distributions, such as exponential, gamma, Weibull, or inverse Gaussian, to name a few, are unable to explain data of this nature. This paper attempts to fill this gap in the literature by introducing a family of distributions that can be unimodal or bimodal and nests the exponential distribution. Some of its more relevant properties, including moments, kurtosis, Fisher’s asymmetric coefficient, and several estimation methods, are illustrated. Different results that are related to finance and insurance, such as hazard rate function, limited expected value, and the integrated tail distribution, among other measures, are derived. Because of the simplicity of the mean of this distribution, a regression model is also derived. Finally, examples that are based on actuarial data are used to compare this new family with the exponential distribution.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献