A Study on Activity of Coexistent CO Gas during the CO2 Methanation Reaction in Ni-Based Catalyst

Author:

Ahn Jeongyoon1ORCID,Chung Woojin1

Affiliation:

1. Department of Environmental Energy Engineering, College of Creative Engineering, Kyonggi University, 94 San, Iui-dong, Youngtong-gu, Suwon-si 16227, Republic of Korea

Abstract

Greenhouse gases, the main cause of global warming, are generated largely in the energy sector. As the need for technology that has reduced greenhouse gas emissions while producing energy is on an increase, CCU technology, which uses CO2 to produce CH4 (SNG energy, synthetic natural gas), is drawing attention. Thus, the reaction for converting CO2 to CH4 at a specific temperature using a catalyst is CO2 methanation. The field of CO2 methanation has been actively studied, and many studies have been conducted to enhance the activity of the catalysts. However, there is a lack of research on the variables that may appear when CO2 methanation is attempted using emissions containing CO2 generated from industrial fields and bio-plants. According to previous studies, it is reported that realistic feed gases from gasification or biomass plants contain a significant amount of CO. this study is a follow-up study focused on the application of CO2 methanation in various real processes. In the CO2 methanation reaction, a study was conducted on the catalyst efficiency and durability of CO gas that can coexist in the inlet gas rather than CO2 and H2 gas. The CO2 methanation activity was observed at 200–350 °C when 0–15% CO coexisted using the Ni-Ce-Zr catalyst, and the operating variables were set for optimal SNG production. As a result of adjusting the ratio of inlet gas to increase the yield of CH4 in the produced gas, the final CO2 conversion of 83% and CO conversion of 97% (with 15% CO gas at 280 °C) were obtained. In addition, catalytic efficiency and catalyst surface analysis were performed by exposing CO gas during the CO2 methanation reaction for 24 h. It showed high activity and excellent stability. The results of this study can be used as the basic data when applying an actual process.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference36 articles.

1. Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., and Shukla, P.R. (2018). Global Warming of 1.5 °C., IPCC.

2. Martin, P., Osvaldo, C., Jean, P., Paul, V.D.L., and Clair, H. (2007). The Fourth Assessment Report Climate Change 2007, Cambridge University Press.

3. Numerical study on the co-burning of pulverized coal and stoichiometric mixture gas of hydrogen and oxygen for the reduction of CO2;Shin;J. Korea Soc. Waste Manag.,2016

4. (2023, February 15). Climate Change 2014 Synthesis Report, UNEP. Available online: https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf.

5. Property based ranking of CO and CO2 methanation catalysts;Kuznecova;Environ. Clim. Technol.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3