Composite Single Lap Shear Joint Integrity Monitoring via Embedded Electromechanical Impedance Sensors

Author:

Caldwell Steven P.1ORCID,Radford Donald W.1

Affiliation:

1. Composite Materials, Manufacture and Structures Laboratory, Colorado State University, Fort Collins, CO 80523, USA

Abstract

Composite bonded structure is a prevalent portion of today’s aircraft structure. Adequate bond integrity is a critical aspect of fabrication and service, especially since many of today’s structural bonds are critical for flight safety. Over the last decade, non-destructive bond evaluation techniques have improved but still cannot detect a structurally weak bond that exhibits full adherend/adhesive contact. The result is that expensive and time-consuming structural proof testing continues to be required to verify bond integrity. The objective of this work is to investigate the feasibility of bondline integrity monitoring using piezoelectric sensors, embedded at different locations within the composite joint, and to assess the benefits of monitoring the thickness mode in addition to the radial mode. Experiments and analyses are performed on single lap shear composite joints, with and without embedded sensors, subjected to incrementally increasing tensile loads. The results indicate that the embedded piezoelectric sensors measure a change in the resonance in both the radial and thickness mode during incremental loading and that the thickness resonance shows enhanced sensitivity to impending failure. Thus, it is demonstrated that monitoring both modes of the piezoelectric sensor provides addition details for prognostic performance evaluation.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3