Single Cell/Nucleus Transcriptomics Comparison in Zebrafish and Humans Reveals Common and Distinct Molecular Responses to Alzheimer’s Disease

Author:

Cosacak Mehmet IlyasORCID,Bhattarai Prabesh,De Jager Philip L.,Menon Vilas,Tosto Giuseppe,Kizil CaghanORCID

Abstract

Neurogenesis is significantly reduced in Alzheimer’s disease (AD) and is a potential therapeutic target. Contrary to humans, a zebrafish can regenerate its diseased brain, and thus is ideal for studying neurogenesis. To compare the AD-related molecular pathways between humans and zebrafish, we compared single cell or nuclear transcriptomic data from a zebrafish amyloid toxicity model and its controls (N = 12) with the datasets of two human adult brains (N = 10 and N = 48 (Microglia)), and one fetal brain (N = 10). Approximately 95.4% of the human and zebrafish cells co-clustered. Within each cell type, we identified differentially expressed genes (DEGs), enriched KEGG pathways, and gene ontology terms. We studied synergistic and non-synergistic DEGs to point at either common or uniquely altered mechanisms across species. Using the top DEGs, a high concordance in gene expression changes between species was observed in neuronal clusters. On the other hand, the molecular pathways affected by AD in zebrafish astroglia differed from humans in favor of the neurogenic pathways. The integration of zebrafish and human transcriptomes shows that the zebrafish can be used as a tool to study the cellular response to amyloid proteinopathies. Uniquely altered pathways in zebrafish could highlight the specific mechanisms underlying neurogenesis, which are absent in humans, and could serve as potential candidates for therapeutic developments.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3