Narrow-Gap Rheometry: A Novel Method for Measuring Cell Mechanics

Author:

Bashir Khawaja Muhammad ImranORCID,Lee Suhyang,Jung Dong Hee,Basu Santanu Kumar,Cho Man-GiORCID,Wierschem Andreas

Abstract

The viscoelastic properties of a cell cytoskeleton contain abundant information about the state of a cell. Cells show a response to a specific environment or an administered drug through changes in their viscoelastic properties. Studies of single cells have shown that chemical agents that interact with the cytoskeleton can alter mechanical cell properties and suppress mitosis. This envisions using rheological measurements as a non-specific tool for drug development, the pharmacological screening of new drug agents, and to optimize dosage. Although there exists a number of sophisticated methods for studying mechanical properties of single cells, studying concentration dependencies is difficult and cumbersome with these methods: large cell-to-cell variations demand high repetition rates to obtain statistically significant data. Furthermore, method-induced changes in the cell mechanics cannot be excluded when working in a nonlinear viscoelastic range. To address these issues, we not only compared narrow-gap rheometry with commonly used single cell techniques, such as atomic force microscopy and microfluidic-based approaches, but we also compared existing cell monolayer studies used to estimate cell mechanical properties. This review provides insight for whether and how narrow-gap rheometer could be used as an efficient drug screening tool, which could further improve our current understanding of the mechanical issues present in the treatment of human diseases.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3