RELA∙8-Oxoguanine DNA Glycosylase1 Is an Epigenetic Regulatory Complex Coordinating the Hexosamine Biosynthetic Pathway in RSV Infection

Author:

Xu Xiaofang,Qiao Dianhua,Pan Lang,Boldogh IstvanORCID,Zhao Yingxin,Brasier Allan R.ORCID

Abstract

Respiratory syncytial virus (RSV), or human orthopneumovirus, is a negative-sense RNA virus that is the causative agent of severe lower respiratory tract infections in children and is associated with exacerbations of adult lung disease. The mechanisms how severe and/or repetitive virus infections cause declines in pulmonary capacity are not fully understood. We have recently discovered that viral replication triggers epithelial plasticity and metabolic reprogramming involving the hexosamine biosynthetic pathway (HBP). In this study, we examine the relationship between viral induced innate inflammation and the activation of hexosamine biosynthesis in small airway epithelial cells. We observe that RSV induces ~2-fold accumulation of intracellular UDP-GlcNAc, the end-product of the HBP and the obligate substrate of N glycosylation. Using two different silencing approaches, we observe that RSV replication activates the HBP pathway in a manner dependent on the RELA proto-oncogene (65 kDa subunit). To better understand the effect of RSV on the cellular N glycoproteome, and its RELA dependence, we conduct affinity enriched LC-MS profiling in wild-type and RELA-silenced cells. We find that RSV induces the accumulation of 171 N glycosylated peptides in a RELA-dependent manner; these proteins are functionally enriched in integrins and basal lamina formation. To elaborate this mechanism of HBP expression, we demonstrate that RSV infection coordinately induces the HBP pathway enzymes in a manner requiring RELA; these genes include Glutamine-Fructose-6-Phosphate Transaminase 1 (GFPT)-1/2, Glucosamine-Phosphate N-Acetyltransferase (GNPNAT)-1, phosphoglucomutase (PGM)-3 and UDP-N-Acetylglucosamine Pyrophosphorylase (UAP)-1. Using small-molecule inhibitor(s) of 8-oxoguanine DNA glycosylase1 (OGG1), we observe that OGG1 is also required for the expression of HBP pathway. In proximity ligation assays, RSV induces the formation of a nuclear and mitochondrial RELA∙OGG1 complex. In co-immunoprecipitaton (IP) experiments, we discover that RSV induces Ser 536-phosphorylated RELA to complex with OGG1. Chromatin IP experiments demonstrate a major role of OGG1 in supporting the recruitment of RELA and phosphorylated RNA Pol II to the HBP pathway genes. We conclude that the RELA∙OGG1 complex is an epigenetic regulator mediating metabolic reprogramming and N glycoprotein modifications of integrins in response to RSV. These findings have implications for viral-induced adaptive epithelial responses.

Funder

National Center for Advancing Translational Sciences

National Institute of Allergy and Infectious Diseases

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3