Understanding Cell Model Characteristics—RNA Expression Profiling in Primary and Immortalized Human Mesothelial Cells, and in Human Vein and Microvascular Endothelial Cells

Author:

Marinovic IvaORCID,Bartosova MariaORCID,Herzog RebeccaORCID,Sacnun Juan ManuelORCID,Zhang Conghui,Hoogenboom Robin,Unterwurzacher Markus,Hackert Thilo,Teleman Aurelio A.,Kratochwill KlausORCID,Schmitt Claus PeterORCID

Abstract

In vitro studies are essential in pre-clinical research. While choice of cell lines is often driven by handling and cost-effectiveness, in-depth knowledge on specific characteristics is scant. Mesothelial cells, which interact with endothelial cells, are widely used in research, including cancer and drug development, but have not been comprehensively profiled. We therefore performed RNA sequencing of polarized, primary peritoneal (HPMC) and immortalized pleural mesothelial cells (MeT-5A), and compared them to endothelial cells from umbilical vein (HUVEC) and cardiac capillaries (HCMEC). Seventy-seven per cent of 12,760 genes were shared between the 4 cell lines, 1003 were mesothelial and 969 were endothelial cell specific. The transcripts reflected major differences between HPMC and MeT-5A in DNA-related processes, extracellular matrix, migration, proliferation, adhesion, transport, growth factor- and immune response, and between HUVEC and HCMEC in DNA replication, extracellular matrix and adhesion organization. Highly variable shared genes were related to six clusters, cell tissue origin and immortalization, but also cell migration capacity, cell adhesion, regulation of angiogenesis and response to hypoxia. Distinct, cell type specific biological processes were further described by cellular component-, molecular function- and Reactome pathway analyses. We provide crucial information on specific features of the most frequently used mesothelial and endothelial cell lines, essential for appropriate use.

Funder

European Union’s Horizon 2020 Research and Innovation Programme

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3