Restoration of BDNF, DARPP32, and D2R Expression Following Intravenous Infusion of Human Immature Dental Pulp Stem Cells in Huntington’s Disease 3-NP Rat Model

Author:

Wenceslau Cristiane Valverde,de Souza Dener Madeiro,Mambelli-Lisboa Nicole Caroline,Ynoue Leandro Hideki,Araldi Rodrigo PinheiroORCID,da Silva Joyce Macedo,Pagani Eduardo,Haddad Monica Santoro,Kerkis Irina

Abstract

Huntington’s disease (HD) is a neurodegenerative inherited genetic disorder, which leads to the onset of motor, neuropsychiatric and cognitive disturbances. HD is characterized by the loss of gamma-aminobutyric acid (GABA)ergic medium spiny neurons (MSNs). To date, there is no treatment for HD. Mesenchymal stem cells (MSCs) provide a substantial therapeutic opportunity for the HD treatment. Herein, we investigated the therapeutic potential of human immature dental pulp stem cells (hIDPSC), a special type of MSC originated from the neural crest, for HD treatment. Two different doses of hIDPSC were intravenously administrated in a subacute 3-nitropropionic acid (3NP)-induced rat model. We demonstrated hIDPSC homing in the striatum, cortex and subventricular zone using specific markers for human cells. Thirty days after hIDPSC administration, the cells found in the brain are still express hallmarks of undifferentiated MSC. Immunohistochemistry quantities analysis revealed a significant increase in the number of BDNF, DARPP32 and D2R positive stained cells in the striatum and cortex in the groups that received hIDPSC. The differences were more expressive in animals that received only one administration of hIDPSC. Altogether, these data suggest that the intravenous administration of hIDPSCs can restore the BDNF, DARPP32 and D2R expression, promoting neuroprotection and neurogenesis.

Funder

Fundação Butantan

Cellavita Pesquisas Científicas Ltda.

Publisher

MDPI AG

Subject

General Medicine

Reference56 articles.

1. Advances in cellular and cell-free therapy medicinal products for Huntigton’s disease treatment;Kerkis,2022

2. CAG Repeat Not Polyglutamine Length Determines Timing of Huntington’s Disease Onset

3. Brain-derived neurotrophic factor and stem cell-based technologies in Huntington’s disease therapy;Kerkis,2020

4. Grey matter volume loss is associated with specific clinical motor signs in Huntington's disease

5. Global changes to the ubiquitin system in Huntington's disease

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3