The Adjustment Strategy of Venus Flytrap Photosynthetic Apparatus to UV-A Radiation

Author:

Miernicka KarolinaORCID,Tokarz BarbaraORCID,Makowski WojciechORCID,Mazur StanisławORCID,Banasiuk RafałORCID,Tokarz Krzysztof M.ORCID

Abstract

The objective of this study was to investigate the response of the photosynthetic apparatus of the Venus flytrap (Dionaea muscipula J. Ellis) to UV-A radiation stress as well as the role of selected secondary metabolites in this process. Plants were subjected to 24 h UV-A treatment. Subsequently, chl a fluorescence and gas exchange were measured in living plants. On the collected material, analyses of the photosynthetic pigments and photosynthetic apparatus proteins content, as well as the contents and activity of selected antioxidants, were performed. Measurements and analyses were carried out immediately after the stress treatment (UV plants) and another 24 h after the termination of UV-A exposure (recovery plants). UV plants showed no changes in the structure and function of their photosynthetic apparatus and increased contents and activities of some antioxidants, which led to efficient CO2 carboxylation, while, in recovery plants, a disruption of electron flow was observed, resulting in lower photosynthesis efficiency. Our results revealed that D. muscipula plants underwent two phases of adjustment to UV-A radiation. The first was a regulatory phase related to the exploitation of available mechanisms to prevent the over-reduction of PSII RC. In addition, UV plants increased the accumulation of plumbagin as a potential component of a protective mechanism against the disruption of redox homeostasis. The second was an acclimatization phase initiated after the running down of the regulatory process and decrease in photosynthesis efficiency.

Funder

National Science Center

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3