TP53INP2 Contributes to TGF-β2-Induced Autophagy during the Epithelial–Mesenchymal Transition in Posterior Capsular Opacification Development

Author:

Cui Yilei,Yang Hao,Shi Silu,Ping Xiyuan,Zheng Sifan,Tang Xiajing,Yu Xiaoning,Shentu Xingchao

Abstract

Background: Posterior capsule opacification (PCO) is the most common complication after cataract surgery, in which increased levels of transforming growth factor-beta 2 (TGF-β2) accelerate PCO formation; however, the pathological mechanisms are not fully understood. This study aims to explore the regulation mechanism of TGF-β2 in PCO formation via its autophagic functions. Methods: The autophagic effect of TGF-β2 was detected by transmission electron microscopy (TEM), Western blotting, and immunofluorescence analysis. The association between autophagy and the epithelial–mesenchymal transition (EMT) was evaluated by qPCR and Western blotting. The transcriptome analysis was used to uncover the molecular mechanism of TGF-β2-induced PCO formation. Results: TGF-β2 specifically promotes autophagy flux in human lens epithelial cells. The activation of autophagy by rapamycin can promote EMT marker synthesis and improve cell migration. However, the inhibition of autophagy by 3-MA attenuates EMT. To uncover the molecular mechanisms, we performed RNA sequencing and found that TGF-β2 elevated tumor protein p53-inducible nuclear protein2 (TP53INP2) expression, which was accompanied by a nuclear-to-cytoplasm translocation. Moreover, the knockdown of TP53INP2 blocked the TGF-β2-induced autophagy and EMT processes, revealing that TP53INP2 plays an important role in TGF-β2-induced autophagy during EMT. Conclusions: Taken together, the results of this study suggested that TP53INP2 was a novel regulator of PCO development by TGF-β2, and notably, TP53INP2, may be a potential target for the pharmacological treatment of PCO.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3