Decreased Expression of Sam68 Is Associated with Insulin Resistance in Granulosa Cells from PCOS Patients

Author:

Vilariño-García Teresa,Guadix Pilar,Dorado-Silva Mónica,Sánchez-Martín Pascual,Pérez-Pérez AntonioORCID,Sánchez-Margalet VíctorORCID

Abstract

Background and objective: Polycystic ovary syndrome (PCOS) is a complex metabolic disorder associated with ovulatory dysfunction, hyperandrogenism, obesity, and insulin resistance, which leads to subfertility. PCOS is the most frequent metabolic disorder in women and the major cause of infertility. Susceptibility to developing PCOS is determined by a complex interaction between environmental and genetic factors. Although different mechanisms have been proposed to explain PCOS manifestations, defects in insulin actions or in the insulin signaling pathways are central in the pathogenesis of the syndrome. However, the mechanisms (molecular players and signaling pathways) underlying its primary origin still remain an unsolved issue. Current research is increasingly focusing on the discovery of novel biomarkers to further elucidate the complex pathophysiology of PCOS. Sam68, an RNA-binding protein, is recruited to insulin signaling, mediating different insulin actions. We aimed to investigate the role of Sam68 in insulin signaling and the possible implications of Sam68 in the insulin resistance in PCOS. Materials and methods: Granulosa cells were taken from women with PCOS (n = 25) and healthy donors (n = 25) and, within the age range of 20 to 42 years, from GINEMED, Assisted Reproduction Centre, Seville, Spain. The Sam68 expression level was analyzed both by qPCR and immunoblot. Statistical significance was assessed by one-way ANOVA, followed by a post-hoc test. A p value of < 0.05 was considered statistically significant. Results: We found that insulin stimulation increases the phosphorylation and expression level of Sam68 in granulosa cells from normal donors. The downregulation of Sam68 expression resulted in a lower activation of both the MAPK and the PI3K pathways in response to insulin. Moreover, the granulosa cells from the women with PCOS presented a lower expression of Sam68, as well as insulin receptor and insulin receptor substrate-1 (IRS-1). In these cells, the overexpression of Sam68 resulted in an increased activation of both the MAPK and the PI3K pathways in response to insulin. Conclusions: These results suggest the participation of Sam68 in insulin receptor signaling, mediating the insulin effect in granulosa cells, and they suggest the possible role of Sam68 in the insulin resistance of PCOS.

Funder

Instituto de Salud Carlos III

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3