In Vivo Comparison of Synthetic Macroporous Filamentous and Sponge-like Skin Substitute Matrices Reveals Morphometric Features of the Foreign Body Reaction According to 3D Biomaterial Designs

Author:

Barsch FriedrichORCID,Mamilos AndreasORCID,Schmitt Volker H.ORCID,Babel Maximilian,Winter Lina,Wagner Willi,Winther HinrichORCID,Ottomann Christian,Niedermair Tanja,Schreml StephanORCID,Hierlemann Helmut,Brochhausen Christoph

Abstract

Synthetic macroporous biomaterials are widely used in the field of skin tissue engineering to mimic membrane functions of the native dermis. Biomaterial designs can be subclassified with respect to their shape in fibrous designs, namely fibers, meshes or fleeces, respectively, and porous designs, such as sponges and foams. However, synthetic matrices often have limitations regarding unfavorable foreign body responses (FBRs). Severe FBRs can result in unfavorable disintegration and rejection of an implant, whereas mild FBRs can lead to an acceptable integration of a biomaterial. In this context, comparative in vivo studies of different three-dimensional (3D) matrix designs are rare. Especially, the differences regarding FBRs between synthetically derived filamentous fleeces and sponge-like constructs are unknown. In the present study, the FBRs on two 3D matrix designs were explored after 25 days of subcutaneous implantation in a porcine model. Cellular reactions were quantified histopathologically to investigate in which way the FBR is influenced by the biomaterial architecture. Our results show that FBR metrics (polymorph-nucleated cells and fibrotic reactions) were significantly affected according to the matrix designs. Our findings contribute to a better understanding of the 3D matrix tissue interactions and can be useful for future developments of synthetically derived skin substitute biomaterials.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3