Abstract
The MYH9 (Myosin heavy chain 9), an architecture component of the actomyosin cytoskeleton, has been reported to be dysregulated in several types of cancers. However, how this molecule contributes to cancer development is still obscure. This study deciphered the molecular function of MYH9 in head and neck cancer (HNC). Cellular methods included clonogenic survival, wound-healing migration, and Matrigel invasion assays. Molecular techniques included RT-qPCR, western blot, luciferase reporter assays, and flow cytometry. Clinical association studies were undertaken by TCGA data mining, Spearman correlation, and Kaplan-Meier survival analysis. We found that MYH9 was overexpressed in tumors and associated with poor prognosis in HNC patients. MYH9 promoted cell motility along with the modulation of the extracellular matrix (fibronectin, ITGA6, fascin, vimentin, MMPs). Also, MYH9 contributed to radioresistance and was related to the expression of anti-apoptotic and DNA repairing molecules (XIAP, MCL1, BCL2L1, ATM, RAD50, and NBN). Mechanically, MYH9 suppressed cellular ROS levels, which were achieved by activating the pan-MAPK signaling molecules (Erk, p38, and JNK), the induction of Nrf2 transcriptional activity, and the up-regulation of antioxidant enzymes (GCLC, GCLM, GPX2). The antioxidant enzyme GCLC was further demonstrated to facilitate cell invasion and radioresistance in HNC cells. Thus, MYH9 exerts malignant functions in HNC by regulating cellular ROS levels via activating the MAPK-Nrf2-GCLC signaling pathway. As MYH9 contributes to radioresistance and metastasis, this molecule may serve as a prognostic biomarker for clinical application. Furthermore, an in vivo study is emergent to support the therapeutic potential of targeting MYH9 to better manage refractory cancers.
Funder
Linkou Chang Gung Memorial Hospital
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献