The Impact of Oulema melanopus—Associated Bacteria on the Wheat Defense Response to the Feeding of Their Insect Hosts

Author:

Wielkopolan Beata,Frąckowiak PatrykORCID,Wieczorek PrzemysławORCID,Obrępalska-Stęplowska AleksandraORCID

Abstract

Wheat production is threatened by the destructive effects of numerous pests, including Oulema melanopus (cereal leaf beetle, CLB). Both adults and larvae of CLB damage grain crops, but the target of insecticide treatments are the larvae. Insect-associated bacteria are important for many of the insects’ life processes and may also modulate plant defense responses to feeding of their insect host. The aim of our study was to elucidate the early wheat plants’ reaction to this herbivore feeding and to disclose the CLB-associated bacteria modulation of the wheat-insect interactions. Transcriptome analyses were performed for the leaves wounded mechanically and by feeding of the CLB larvae as well as for the distal leaves to study both, the plant’s local and systemic response. Comparative transcriptome analysis indicated that 24 h after the plant treatment, a much larger number of up-regulated DEGs in damaged leaves was noted, especially those on which larvae were fed. It may suggest that at the analysed time point, the local response was stronger than the systemic one. In the leaves on which larvae with natural bacterial flora were fed (local response), the number of up- and down-regulated differentially expressed genes (DEGs) was 7136 and 7411, respectively, in comparison to the dataset obtained for the leaves wounded by larvae with a reduced number of bacteria. In the distal leaves, 3015 up- and 2372 down-regulated DEGs were noted. CLB-associated bacteria were found to affect many aspects of the physiology of wheat plants, especially in wounded leaves, including the expression of genes related to primary metabolism, phytohormone signaling and photosynthesis. We also observed that CLB-associated bacteria mitigated numerous anti-herbivore processes and pathways associated with the synthesis of metabolites and proteins, potentially harmful to the insects. The bacteria also reversed the expression of some genes involved, inter alia, in the phosphorylation of proteins, oxidative stress, cell wall organization, and biogenesis. Understanding the role of CLB-associated bacteria in the plant’s defense response will be important to the fields of pest control and herbivore and its host ecology and evolution.

Funder

National Science Center

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3