Abstract
Nogo-B has been reported to play a critical role in angiogenesis and the repair of damaged blood vessels; however, its role in the tumor microenvironment remains unclear. Here, we observed the differential expression of Nogo-B in endothelial cells from hepatocellular carcinoma (HCC) and glioma samples. Downregulation of Nogo-B expression correlated with the malignant phenotype of cancer and a poor prognosis for patients. In subsequent studies, endothelial Nogo-B inhibition robustly promoted the growth of HCC or glioma xenografts in nude mice. Intriguingly, endothelial Nogo-B silencing dramatically suppressed endothelial cell expansion and tumor angiogenesis, but potently enhanced the proliferation of neighboring HCC and glioma cells. Based on the results of the ELISA assay, Nogo-B silencing reduced TGF-β production in endothelial cells, which attenuated the phosphorylation and nuclear translocation of Smad in neighboring cancer cells. The endothelial Nogo-B silencing-mediated increase in cancer cell proliferation was abolished by either a TGF-β neutralizing antibody or TGF-β receptor inhibitor, indicating the essential role for TGF-β in endothelial Nogo-B-mediated suppression of cancer growth. These findings not only broaden our understanding of the crosstalk between cancer cells and endothelial cells but also provide a novel prognostic biomarker and a therapeutic target for cancer treatments.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shanghai municipality