Distinct Synaptic Vesicle Proteomic Signatures Associated with Pre- and Post-Natal Oxycodone-Exposure

Author:

Odegaard KatherineORCID,Gallegos GabrielORCID,Koul Sneh,Schaal VictoriaORCID,Vellichirammal Neetha,Guda ChittibabuORCID,Dutoit Andrea,Lisco Steven,Yelamanchili SowmyaORCID,Pendyala GuruduttORCID

Abstract

The current opioid crisis, which has ravaged all segments of society, continues to pose a rising public health concern. Importantly, dependency on prescription opioids such as oxycodone (oxy) during and after pregnancy can significantly impact the overall brain development of the exposed offspring, especially at the synapse. A significant knowledge gap that remains is identifying distinct synaptic signatures associated with these exposed offspring. Accordingly, the overall goal of this current study was to identify distinct synaptic vesicle (SV) proteins as signatures for offspring exposed to oxy in utero (IUO) and postnatally (PNO). Using a preclinical animal model that imitates oxycodone exposure in utero (IUO) and postnatally (PNO), we used a quantitative mass spectrometry-based proteomics platform to examine changes in the synaptic vesicle proteome on post-natal day 14 (P14) IUO and PNO offspring. We identified MEGF8, associated with carpenter syndrome, to be downregulated in the IUO offspring while LAMTOR4, associated with the regulator complex involved in lysosomal signaling and trafficking, was found to be upregulated in the PNO groups, respectively. Their respective differential expression was further validated by Western blot. In summary, our current study shows exposure to oxy in utero and postnatally can impact the SV proteome in the exposed offspring and the identification of these distinct SV signatures could further pave the way to further elucidate their downstream mechanisms including developing them as potential therapeutic targets.

Funder

National Institute of Health

Publisher

MDPI AG

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3