Immunomodulatory Effect and Bone Homeostasis Regulation in Osteoblasts Differentiated from hADMSCs via the PD-1/PD-L1 Axis

Author:

Lee Seung-Cheol,Shin Min KyoungORCID,Jang Bo-Young,Lee Seung-Ho,Kim Min,Sung Jung-Suk

Abstract

Human mesenchymal stem cells (hMSCs) are promising candidates for stem cell therapy and are known to secrete programmed death-1 (PD-1) ligand 1 (PD-L1) regulating T cell-mediated immunosuppression. Given the limitations of current stem cell therapy approaches, improvements in immunomodulatory capacity and stem cell differentiation efficacy are needed. In this study, we propose novel strategies to overcome the challenges that remain in hMSC-mediated bone regeneration. We found that PD-1 is highly expressed in osteoblasts, and the PD-1/PD-L1 axis mediated the decreased proinflammatory cytokine expressions in differentiated osteoblasts cocultured with human adipose derived mesenchymal stem cells (hADMSCs). Moreover, the decrease was attenuated by PD-1/PD-L1 pathway inhibition. Osteogenic properties including osteogenic gene expression and calcium deposits were increased in osteoblasts cocultured with hADMSCs compared with those that were monocultured. Osteoblasts treated with PD-L1 and exosomes from hADMSCs also exhibited enhanced osteogenic properties, including calcium deposits and osteogenic gene expression. In our cocultured system that mimics the physiological conditions of the bone matrix, the PD-1/PD-L1 axis mediated the increased expression of osteogenic genes, thereby enhancing the osteogenic properties, while the calcium deposits of osteoblasts were maintained. Our results provide the therapeutic potentials and novel roles of the PD-1/PD-L1 axis in bone matrix for modulating the bone properties and immunosuppressive potentials that can aid in the prevention of bone diseases via maintaining bone homeostasis.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3