ROS Signaling Mediates Directional Cell Elongation and Somatic Cell Fusion in the Red Alga Griffithsia monilis

Author:

Moon Jong-SeokORCID,Hong Chan-YoungORCID,Lee Ji-WoongORCID,Kim Gwang-Hoon

Abstract

In many filamentous red algae, cells that die from physical damage are replaced through somatic fusion of repair cells formed from adjacent cells. We visualized ROS generation in repair cells of Giriffthsia monilis using DCFH-DA staining and examined the expression of the genes involved in wound healing using quantitative PCR. Repair cells elongate along the H2O2 gradient, meet at each other’s tips where the H2O2 concentration is highest, and undergo somatic fusion. No wound response occurred with ascorbic acid treatment. Conversely, H2O2 treatment induced many repair cells, leading to multiple somatic cell fusions. Diphenylene iodonium (DPI) or caffeine treatment reversibly inhibited ROS production in repair cells and blocked the progression of the wound response suggesting that ROS and calcium signaling are involved in the process. Four G. monilis homologues of NADPH-oxidase (GmRBOHs) were identified. The expression of GmRBOHs was upregulated upon injury, peaking 1 h post injury, and decreasing to initial levels when repair cells began to elongate. Our results suggest that ROS generated upon cell injury activates Ca2+ channels and upregulates the expression of GmRBOHs, and that H2O2 generated from repair cells mediates induced repair cell elongation leading to somatic cell fusion and filament repair.

Funder

National Research Foundation of Korea

National Marine Biodiversity Institute of Korea

Publisher

MDPI AG

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3