ChromoEnhancer: An Artificial-Intelligence-Based Tool to Enhance Neoplastic Karyograms as an Aid for Effective Analysis

Author:

Bokhari Yahya,Alhareeri Areej,Aljouie AbdulrhmanORCID,Alkhaldi Aziza,Rashid Mamoon,Alawad Mohammed,Alhassnan Raghad,Samargandy SaadORCID,Panahi Aliakbar,Heidrich Wolfgang,Arodz Tomasz

Abstract

Cytogenetics laboratory tests are among the most important procedures for the diagnosis of genetic diseases, especially in the area of hematological malignancies. Manual chromosomal karyotyping methods are time consuming and labor intensive and, hence, expensive. Therefore, to alleviate the process of analysis, several attempts have been made to enhance karyograms. The current chromosomal image enhancement is based on classical image processing. This approach has its limitations, one of which is that it has a mandatory application to all chromosomes, where customized application to each chromosome is ideal. Moreover, each chromosome needs a different level of enhancement, depending on whether a given area is from the chromosome itself or it is just an artifact from staining. The analysis of poor-quality karyograms, which is a difficulty faced often in preparations from cancer samples, is time consuming and might result in missing the abnormality or difficulty in reporting the exact breakpoint within the chromosome. We developed ChromoEnhancer, a novel artificial-intelligence-based method to enhance neoplastic karyogram images. The method is based on Generative Adversarial Networks (GANs) with a data-centric approach. GANs are known for the conversion of one image domain to another. We used GANs to convert poor-quality karyograms into good-quality images. Our method of karyogram enhancement led to robust routine cytogenetic analysis and, therefore, to accurate detection of cryptic chromosomal abnormalities. To evaluate ChromoEnahancer, we randomly assigned a subset of the enhanced images and their corresponding original (unenhanced) images to two independent cytogeneticists to measure the karyogram quality and the elapsed time to complete the analysis, using four rating criteria, each scaled from 1 to 5. Furthermore, we compared the enhanced images with our method to the original ones, using quantitative measures (PSNR and SSIM metrics).

Funder

King Abdullah International Medical Research Center

Publisher

MDPI AG

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integration of artificial intelligence in clinical laboratory medicine: Advancements and challenges;Interdisciplinary Medicine;2024-06-14

2. The Role of Artificial Intelligence in the Diagnosis of Neoplastic Diseases: A Systematic and Bibliometric Review;International Journal of Online and Biomedical Engineering (iJOE);2024-03-04

3. WoS Driven Bibliometric Analysis on Genetic Disease Prediction Using Artificial Intelligence;2023 International Conference on Advanced Computing & Communication Technologies (ICACCTech);2023-12-23

4. Reimagining Healthcare: Unleashing the Power of Artificial Intelligence in Medicine;Cureus;2023-09-04

5. Applications of artificial intelligence in clinical laboratory genomics;American Journal of Medical Genetics Part C: Seminars in Medical Genetics;2023-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3